Magnetic Compensation of Magnetic Noises Related to Aircraft’s Maneuvers in Airborne Survey

R. W. Groom, PetRos EiKon, Concord, Ontario, Canada
Ruizhong Jia, PetRos EiKon, Concord, Ontario, Canada
Bob Lo, BHL Earth Sciences, Thornhill, Ontario, Canada

SAGEEP 2004

• Effects of aircraft motion on data
 a) What are the effects?
 b) Traditional approaches
 c) Why Study Compensation? – methodology, direction

• Investigation of some fundamentals
 a) Solvers, Filters
 b) The use of synthetic data

• Compensation with multiple GPS antennae
 a) Methodology
 b) Results

• Where to from here?
Compensation of AeroMagnetic Noises

OVERVIEW

BASICS
- New generations of optically pumped sensors have their sensitivity quoted in pT
- New instrumentation is also attempting to measure high accuracy vector data.
- Aircraft/helicopter itself emanates magnetic signals
- Compensation a limiting factor in obtaining highly accurate data

TOPICS
1) problems and techniques related to removing the effects of the moving platform
2) attempts to study the subject with the use of simulated data.
3) Attempts to use GPS data as orientation
Compensation of AeroMagnetic Noises

BASICS

- 3-axes fluxgate

Total field sensor

- Permanent
- Induced
- EM?

- Aircraft (helicopters, moving platforms) are magnetic
- Magnetic effects VARY with the aircraft’s attitude – (wrt B_0)
- Motion within B_0, Gradients in B_0, heading effects
- Determine the effects as a function of attitude and rotation rates
Compensation of AeroMagnetic Noises

METHOD

\[\mathbf{B}_T = \sum C_i a^i, \ i=1,N \quad \text{Leliak, 1961} \]

- \(C_i, \ i=1,3 \) - permanent
- \(C_i, \ i=4,9 \) - induced
- \(C_i, \ i=10,18 \) - induced EM
- \(C_i, \ i=19,? \) - gradients, heading effects, em noise

\[a_i = f^i (\cos X, \cos Y, \cos Z) \text{ or } B_0 g^i (\cos X, \cos Y, \cos Z) \]

\[B_0 h^i [\frac{d}{dt} (\cos X, \cos Y, \cos Z)] \]

where \(\cos(\ldots) \) are direction cosines of the aircraft’s axes wrt to \(B_0 \) traditionally from fluxgate data

- find \(c_i \) at altitude in a *uniform field*
 and apply corrections to survey data
Compensation of AeroMagnetic Noises

Issues and Objectives

• History clouded
 military, exploration
• Adequacy of assumed mathematical system
 number of terms, synthetic models
• Solution techniques
• Sensor, Gradient effects
 box data
• Effects of non-uniform fields – gradients, anomalies
• GPS attitude
 fluxgate data not actually used to determine orientation
Compensation of AeroMagnetic Noises
Issues and Objectives - 1

- Adequacy of assumed mathematical system
 number of terms, synthetic models, filters

Effect of high-pass filter on synthetic remanent and induced

- Raw mag

- Compensated - Gaussian high-pass

- Compensated - no high-pass

Response (nTesla)

Fiducial
Compensation of AeroMagnetic Noises

Issues and Objectives - 1

• Adequacy of assumed mathematical system
 number of terms, synthetic models, filters

✓ Even for induced and permanent system not complete

✓ High-pass introduces noise and DC shift

✓ For synthetic data solvers equivalent
Compensation of AeroMagnetic Noises

Issues and Objectives - 2

Solution techniques

\[\mathbf{AC} = \mathbf{Y}, \quad \mathbf{n}\times\mathbf{m}, \quad n=18, \quad m>>18 \]

1. Ridge Regression
2. Singular Value Decomposition
3. Conjugate Gradient
4. Symmetric Inverse

Compensation example - L9100, Box 217

-raw
-13 SVD
-16 SVD

Absolute X (m) vs. Response (nTesla)
• Aircraft attitude and Filtering
 or Filter the Data or Filter the Operator

- for synthetic data results are equivalent
- Gaussian high-pass best we found

Red curve: 5th term before filtration
Blue curve: 5th term after filtration 0.2Hz cutoff
Compensation of AeroMagnetic Noises

Issues and Objectives - 3

- Aircraft attitude and Filtering
 - or Filter the Data or Filter the Operator

Real Data
- Highpass of data easier to understand but not always the best
Sensor, Heading and Gradients Effects

- removal of 1st order gradient does not improve results

- for best results each sensor treated differently – coefficients, solver, filters
Sensor, Heading and Gradients Effects

multiple line coefficients vs single line coefficients

Red curve: measured total field (nT)
Blue: line-to-line compensation results
Green: compensation results with all four box lines
Compensation of AeroMagnetic Noises

Issues and Objectives - 5

Use of GPS attitude
- to improve compensation over anomalies
- improve coefficient calculation due to regional effects
- compensate fluxgate data
- fluxgate data not actually used to determine orientation

- Field tests were done with 3 Novatel Millenium geodetic grade, dual frequency GPS’s on Terraquest’s Navajo
- GPS’s were sampled at 10 Hz
- base station was 40 to 70 kms away
- base station a Novatel Millenium sampled at 10 Hz
- differential corrections done with WayPoint software

➤ GPS data has what appears to be a long period drift

➤ Utilized on-board as basestation – 3 local difference vectors
Compensation of AeroMagnetic Noises
Issues and Objectives -5

Use of GPS attitude

Note: Operator terms in Leliak’s system are projections of B_i on $|B|$

Red: simulated B_z
Blue: measured B_z

Red: measured B_{total}
Blue: compensated total field with FW and FS vectors
Green: compensated total field with measured Fluxgate
The blue and green curves DC shifted.
Use of GPS attitude

Red: measured Btotal
Blue: compensated total field with FW and FS vectors
Green: compensated total field with measured Fluxgate
The blue and green curves DC shifted.
Conclusions

- Synthetic models reveal useful information
- Compensation can be improved under most conditions via the judicious use of different solvers and parameters,
- there are other assumptions within Leliak’s formulation which are only approximations as “perfect” synthetic data cannot be totally compensated.
- some assumptions, such as accurate orientation information from fluxgate magnetometers, are not valid under all circumstances,
- other methods of obtaining orientation data such as using multiple GPS’s are possible
- Ridge regression analysis and truncated singular value decomposition are effective techniques to improve the predicative power of the 16-term and 18-term interference models, particularly when multicolinearities exist in the interference models.
Acknowledgements

• To the Ontario Geological Survey and Terraquest releasing the raw aeromagnetic data for this research,
• To Terraquest for supplying their Navajo for the airborne testing
• To the Province of Ontario for partial funding of the research
• To Barrie Leach and Nelson Bradley (NRC-Canada) for their helpful discussions and suggestions