Magnetic Compensation of Magnetic Noises Related to Aircraft's Maneuvers in Airborne Survey

> R. W. Groom, PetRos EiKon, Concord, Ontario, Canada Ruizhong Jia, PetRos EiKon, Concord, Ontario, Canada Bob Lo, BHL Earth Sciences, Thornhill, Ontario, Canada SAGEEP 2004

- Effects of aircraft motion on data
 - a) What are the effects?
 - b) Traditional approaches
 - c) Why Study Compensation? methodology, direction

• Investigation of some fundamentals

- a) Solvers, Filters
- b) The use of synthetic data
- Compensation with multiple GPS antennae
 - a) Methodology
 - b) Results
- Where to from here?

Compensation of AeroMagnetic Noises OVERVIEW

BASICS

- New generations of optically pumped sensors have their sensitivity quoted in pT
- New instrumentation is also attempting to measure high accuracy vector data.
- **Aircraft/helicopter itself emanates magnetic signals**
- Compensation a limiting factor in obtaining highly accurate data

TOPICS

- 1) problems and techniques related to removing the effects of the moving platform
- 2) attempts to study the subject with the use of simulated data.
- 3) Attempts to use GPS data as orientation

- aircraft (helicopters, moving platforms) are magnetic
- magnetic effects VARY with the aircraft's attitude (wrt B_0)
- Motion within B_0 , Gradients in B_0 , heading effects
- Determine the effects as a function of attitude and rotation rates

Compensation of AeroMagnetic Noises METHOD

 $B_{T} = \blacksquare C_{i} a^{i}, i=1, N \quad \text{Leliak, 1961}$ $C_{i}, i=1,3 \text{ - permanent}$ $C_{i}, i=4,9 \text{ - induced}$ $C_{i}, i=10,18 \text{ - induced EM}$ $C_{i}, i=19,? \text{ - gradients, heading effects, em noise}$

a_i = fⁱ (cosX,cosY,cosZ) or B₀ gⁱ (cosX,cosY,cosZ) B₀ hⁱ [d/dt (cosX,cosY,cosZ)] where cos(..) are direction cosines of the aircraft's axes wrt to B₀ traditionally from fluxgate data

If ind c_i at altitude in a *uniform field* and apply corrections to survey data

• History clouded

military, exploration

• Adequacy of assumed mathematical system number of terms, synthetic models

- Solution techniques
- Sensor, Gradient effects

box data

- Effects of non-uniform fields gradients, anomalies
- GPS attitude

fluxgate data not actually used to determine orientation

> •Adequacy of assumed mathematical system number of terms, synthetic models, filters

✓ Even for induced and permanent system not complete

✓ High-pass introduces noise and DC shift

✓ For synthetic data solvers equivalent

Solution techniques

- $\underline{A}C = Y$, nxm, n=18, m>>18
- 1. Ridge Regression
- 3. Conjugate Gradient
- 4. Symmetric Inverse

2. Singular Value Decomposition

• Aircraft attitude and Filtering or Filter the Data or Filter the Operator

-for synthetic data results are equivalent - Gaussian high-pass best we found

• Aircraft attitude and Filtering

or Filter the Data or Filter the Operator Real Data

- Highpass of data easier to understand but not always the best

Sensor, Heading and Gradients Effects

-removal of 1st order gradient does not improve results

-for best results each sensor treated differently – coefficients, solver, filters

Sensor, Heading and Gradients Effects

Use of GPS attitude

to improve compensation over anomalies improve coefficient calculation due to regional effects compensate fluxgate data fluxgate data not actually used to determine orientation

- Field tests were done with 3 Novatel Millenium geodetic grade, dual frequency GPS's on Terraquest's Navajo
- GPS's were sampled at 10 Hz
- base station was 40 to 70 kms away
- base station a Novatel Millenium sampled at 10 Hz
- differential corrections done with WayPoint software
 - ≻GPS data has what appears to be a long period drift
 - ➤ Utilized on-board as basestation 3 local difference vectors

Use of GPS attitude Note: Operator terms in Leliak's system are projections of B_i on |B|

Use of GPS attitude

Conclusions

- Synthetic models reveal useful information
- Compensation can be improved under most conditions via the judicious use of different solvers and parameters,
- there are other assumptions within Leliak's formulation which are only approximations as "perfect" synthetic data cannot be totally compensated.
- some assumptions, such as accurate orientation information from fluxgate magnetometers, are not valid under all circumstances,
- other methods of obtaining orientation data such as using multiple GPS's are possible
- Ridge regression analysis and truncated singular value decomposition are effective techniques to improve the predicative power of the 16-term and 18-term interference models, particularly when multicolinearities exist in the interference models.

Acknowledgements

- To the Ontario Geological Survey and Terraquest releasing the raw aeromagnetic data for this research,
- To Terraquest for supplying their Navajo for the airborne testing
- To the Province of Ontario for partial funding of the research
- To Barrie Leach and Nelson Bradley (NRC-Canada) for their helpful discussions and suggestions

